Town of Yorktown Report 1 / 2 Greenhouse Gas Emissions Report For Municipal Only February, 2021

R. DeAngelis

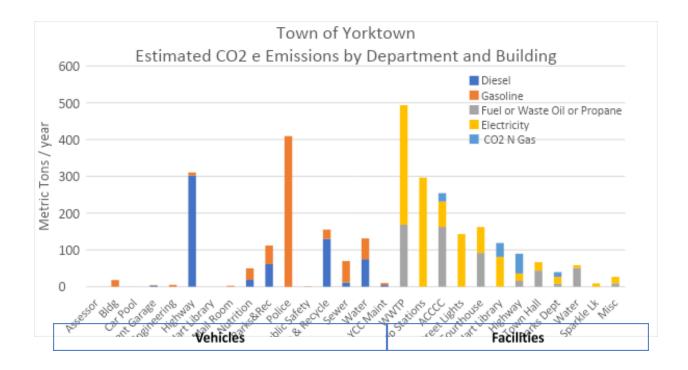
Member, Yorktown Climate Smart Communities Task Force

The Town of Yorktown is working to attain the status of Climate Smart Community as designated by New York State. Fundamental to that goal is understanding the sources of greenhouse gases (GHG). This includes direct emissions from fossil fuels (natural gas, gasoline, fuel oil, diesel) and indirect emissions such as those resulting from the production of electricity consumed. This information can provide impetus for future reductions and also be the basis for nest steps such as building energy efficiency assessments. This was a significant endeavor for the following reasons:

- The town has extensive facilities
- Electricity is purchased from NYPA, NYSEG and Constellation and there are an extensive number of electric meters
- The fleet has over 150 vehicles
- There is no central repository for energy information

Helpful in this assessment were:

- The vehicle fuel tracking tool
- Detailed input from NYSERDA and NYPA
- EPA factors for converting fuel used into CO2e
- The EPA State Inventory and Projection Tool
- The detailed ledger and vendor spending tracking system


Town of Yorktown Background

The Town of Yorktown covers multiple zip codes and includes roughly 37,000 residents, and 13,000 households. The community is served by Con Ed and NYSEG. Much of the town does not have natural gas service and relies on fuel oil. The town owns and operates a wastewater treatment plant and water treatment facilities. About 27% of the population is connected to the wastewater treatment plant.

Findings

The overall emissions resulting from town activities and facilities are shown below in Figure 1. The results are shown as equivalent (other greenhouse gases are also included, albeit they are small in comparison to CO2):

Figure 1

This information will be leveraged to drive reductions. The total emissions are just over 3000 Metric Tons / Year of CO2 e for items depicted in this graph. It is interesting to note that the combined wastewater treatment and pumping account for a very significant amount of energy use and associated GHG emissions.

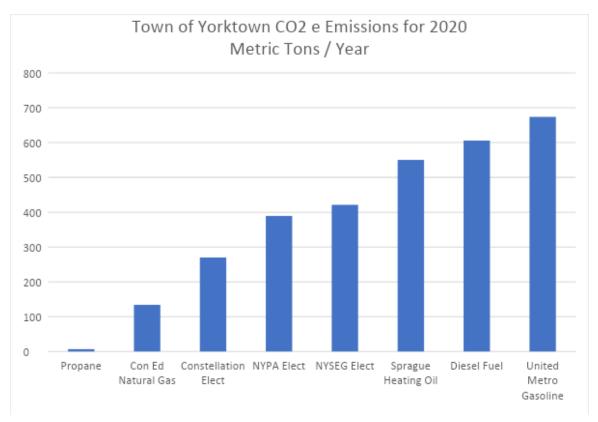


Figure 2 provides a breakdown of emissions by source:

It can be seen that the single largest supplier source is gasoline, which is primarily used by the police department. Note that if all electric sources were combined, they would be the single largest emitter.

Sources for Facilities

One of the challenges in this assessment was unwrapping the details of what is used in each facility. Table 1 below shows an overview of emissions by facility and by source/supplier:

Table1 – Metric Tons of CO2 e by User

	Ele	ctricity		Nat Gas	Fuel Oil	Waste	Propane	Total
Supplier:	Constellation	NYPA	NYSEG	Con Ed	Spragu e	Oil	Suburban & Paraco	Metric Tons CO2 e
WWTP & Osceola	146		178	7	169		7	507
Pump Stations		250	47					297
ACCCC	19		50	23	163			254
Street Lights	36	58	49					143
Police/Courthouse	28		42		92			162
J. C. Hart Library		81		38				119
Highway	6		14	54		16		90
Town Hall/Records	10		13		44			67
Parks Dept	6		13	13	8			40
Water	8				51			58
Sparkle Lk			9					9
Misc	11		7		9			27
	270	390	422	134	535	16	7	1,773

Methodology

Greenhouse gases were calculated using activity data multiplied by the appropriate emissions factors, as prescribed in the LGOP. In May of 2020, I did request a tool from NYS DEC, and a person named Willow Eyres from dec.ny.gov responded by email that CSC did not have a free tool available and recommended the EPA tool. Since our data was in so many different forms, it fit our needs better to use an Excel spreadsheet and I am very familiar with Excel. To illustrate how this methodology was used, let me give some examples:

For vehicles, the town has a system for tracking fuel used by every vehicle. There are two types of fuel: gasoline and diesel. For this example, I chose diesel. The source of the emission factor is listed, along

with the proper conversions. All original usage data was in pdf format, and had to be transcribed manually to a spreadsheet. For each calculation, I listed in the spreadsheet the source of the emission factor, and the conversions needed to arrive at the proper units (for example):

https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle

Vehicles https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-reference

diesel 10,180 grams CO₂/ gallon

10,180 grams CO2 metric ton 0.01018 metric tons CO2

gallon 1,000,000 grams gallon

Therefore, for vehicles, the spreadsheet is simply the gallons used multiplied by the appropriate emission factor and that result was totaled by functional area:

		lan	uarv	Eab	ruary	0.0	arch		oril	0.4	lav	- 14	ine	le le	ılv	Au	eust	Sente	noh o r	0.0	ober	Nave	nohar	Dece	mhar	r Totals		
	-	Gallons	Dollars	Gallons	Dollars	Gallens		Gallons	Dollars	Gallons	Dollars	Gallons	Dallars	Gallons	Dollars	Gallons	Dollars	Gallons	Dollars	Gallons	Dollars	Gallons	Dollars	Gallons	Dollars	Gallons	Dollars	
	A	Galidis	Dullais	Gallois	Duriais	Galifolis	Dullais	Garions	Dullais	Galitotts	Dullais	Gallois	Dullais	Galiulis	Dullais	Galiulis	Dollais	Garions	Dullais	Garrons	Dullais	Gallons	Dullais	Garions	Dullais	Gallora	Collars	
ss ess or	Gas																									-	-	Ass ess or
ss ess or	Di es el																											Ass ess or
ildg	Gas	199.86	31 7. 21	120.38	182.97	177.75	305.08	175.73	342.94	96.00	211.55	188.51	394.36	17437	364.67	147.46	303.32	198.99	236.88	131.43	242.67	96.89	180.23	110.35	205.17	1,777.72	3,347.05	Bldg Gas
ildg	Diesel																									-	-	Bldg Diesel
ar Pool	Gas			16.40	24.83																					16.40	24.83	Car Pool Gas
Car Pool	Diesel																									-	-	Car Pool Diesel
ent Garage	Gas	28.00	44 32	14.40	22.15	16.90	29.49	14.30	27.67	17.00	36.33	16.70	32.18			15.90	33.17					16.70	30.98	16.90	31.64	195.80	289.99	Cent Garage Gas
ent Garage	Diesel	63.19	132.18	49.06	105.80	49.06	106.80			32.63	73.7E	29.30	61.82	33.28	65.40			32.76	65.09					20.59	43.30	309.87	655.17	Cent Garage Diesel
ngineering	Gas	13.30	21.43	15.20	23.38	1440	26.56	85.40	166.63	67.29	147.48	85.08	177.56	15.30	31.99	50.92	102.88	87.00	163.18	28.40	52.51	1450	27.14	12.40	23.21	489.19	963.95	Engineering Gas
ngineering	Di es el																									-	-	Engineering Diesel
lighway	Gas	120.84	191.55	106.04	161.09	126.66	213.77	93.10	182.75	71.20	156.48	71.10	147.94	80.00	169.69	48.37	38.75	31.80	59.20	27.20	48.99		84.10	38.14	70.47	814.45	1,984.79	Highway Gas
lighway	Diesel	4,638.09	9,709.48	3,582.01	7,952.23	3,582.01	7,952.23	1,610.85	3,559.99	1,776.46	4,016.56	1,462.97	3,091.33	1,465.12	2,879.99	1,793.37	3,650.36	1,623.33	3, 245. 29	2,161.03	4,326.62	1,580.41	3,257.71	4,417.33	9,289.59	29,692.98	62,930.39	Highway Diesel
C. Hart Library	Gas					15.00	2409	13.90	26.90									14.48	26.81			9.60	17.81				95.61	J C. Hart Library Gas
C. Hart Library	Diesel																									-	-	J.C. Hart Library Diesel
/lail Room	Gas	26.50	42.23	17.50	26.71	20.70	36.12	20.80	40.25	17.70	39.38	16.80	33.77	28.20	60.31	18.10	36.40	20.00	37.16	16.90	31.21	28.30	52.47	16.50	30.51	248.00	466.32	Mail Room Gas
Mail Room	Diesel																											Mail Room Diesel
Autrition	Gas	284.95	454.05	139.60	213.57	300.90	513.36	332.90	654.24	273.30	601.36	339.90	705.59	19770	412.56	176.60	362.61	190.90	355.46	312.70	577.30	21440	399.09	322.50	591.89	3.096.35	5841.12	Mutrition Gas
Nutrition	Diesel	106.01	221.87	193.52	430.32	193.52	430.32	64.70	142.99	116.67	263.79	124.08	262.87	218.62	429.60	259.92	525.95	204.98	438.45	100.29	200.88	14466	296.62	102.16	21484	1.829.13	3.828.50	Nutrition Diesel
Parks & Rec	Gas	389.52	616.80	313.14	475.37	458.36	783.93	383.06	753.43	353.26	788.04	678.50	1.407.56	746.11	1.565.30	508.20	1.042.21	267.83	489.33	365.15	675.43	222.33	413.54	297.95	546.88	4,990.07	9,568,42	Parks & Rec Gas
Parks & Rec	Diesel	527.19	1,103,20	488.34	1.069.72	488.34	1.069.72	337.02	744.82	642.64	1.453.03	722.35	1,527,40	453.38	890.86	610.68	1,233.78	499.33	335.68	446.47	834.61	474.20	975 92	320.64	674.32	6,010.58	12,633,06	Parks & Rec Diesel
alice	Gas	3, 195, 01	5,082.98	2,605.48	3,972.18			3.351.39		3.866.25	8,429,79	3.533.13	7.332.43		6.965.61		6,789,91	3.523.93		3.620.50		3.397.95	6.318.81	3.016.20	5,543.69	40,192.09	76,217,14	Police Gas
alice	Diesel	3, 223.02	3,002.30	2,003.70	3,372.20	3, +10.00	3,313.31	3,332.33	0,330.03	3,000.23	0, 122.72	3,333.13	7,332.43	3,320.3+	0,303.02	3,311.13	0,103.32	3,313.33	0,302.07	3,010.30	0,031.33	3,337.33	0,320.02	3,010.10	3,3 13.03	40,332,03	70/22/194	Police Diesel
ublicSafety	Gas			20.50	31.04	15.50	2489									30.10	58.88			11.10	20.38	2.00	3.71			79.20	138.90	Public Safety Gas
ublicSafety	Diesel			20.50	32.01		1.05			14.73	33.30					50.10					10.00					14.73	33,30	Public Safety Diesel
lefuse & Recycle		330.03	526.95	189.81	288.83	281.97	482.41	240.39	469.46	219.93	480.69	196.72	412.87	23412	488.22	211.40	436.25	82.45	15485	179.62	332.00	103.58	193.36	195.74	359.14	2.465.76	4.625.05	Refuse & Recycle Gas
Refuse & Recycle		1,091.45			2,402.85	1,086.11		1,223.87		1, 250, 46	2,827.36	971.98	2,070.10	1.030.35	2.024.61		2,361.07	1.087.94	2 170 44	1.101.80			2,079.26	680.52		12,731.78	26,985.41	Refuse & Recycle Diesel
	Gas	568.34	905.23	516.53	785.07	589.26	99492	491.56	368.21	395.73	862.33	403.43	837.46	522.28	1.036.68	468.12	354.34	404.85	755.00	452.40	836.57	433.19	806.60	433.67	306.42	5739.48	10,719,49	Sewer Gas
ewer ewer	Diesel	142.85	298.74	81.93	178.04	81.93	178.04		232.47	76.03	172.04	64.33	142.77	85.29	1,096.68	71.00	144.98	92.92	185.85	102.01	203.33	156.21	325.29	933.67 54.02	113.61	1,113,83	2,342,76	Sewer Gas Sewer Diesel
	Gas	67.60	107.67	27.70	42.16	3460	59.93	35.50	69.49		75.66	36.60	80.14	28.10	60.17		36.12	28.30	53.12	28.00	51.65	28.60		20.30	36.53	389.90	726.02	Supervisor Gas
Supervisor		67.60	10 1.61	27.70	42.16	3460	53.33	35.50	69.49	34.30	75.66	36.60	60.14	28.10	60.17	17.90	36.12	25.30	53.12	28.00	51.65	28.60	53.38	20.30	36.53	369.50	/26.02	
Supervisor	Diesel				703.25	50288	860.15	444.32	964.97				964.82	417.96	872.05				825.63			443.15				5596.36	10.486.23	Supervis or Diesel
Nater	Gas	528.98	842.98	461.42						419.43	906.48	463.82				471.91	957.27	443.16		493.46	912.53		824.63	455.87	841.47			WaterGas
Vater	Diesel	870.20	1,820.96	731.10	1,616.68	731.10	1,616.68	478.29	1,057.03	726.83	1,643.35	575.22	1,202.69	613.70	1,205.94	562.59	1,148.77	659.20	1, 31 7. 48	402.87	807.72	444.95	907.52	550.48	1,157.67	7,346.53	15,902.90	WaterDiesel
CC Maint	Gas	40.70	65.57	41.00	62.07	82.80	141.28	98.24	114.22	67.20	147.64	32.50	66.75	35.50	71.67	48.30	98.34	28.60	53.79	46.90	86.77	42.40	78.94	35.00	65.00	599.14	1,052.04	YCC Maint Gas
OC Maint	Di es el	63.21	132.43	60.05	133.55	60.05	133.55	32.11	70.97	71.14	160.85	28.91	61.00	30.92	60.76			30.64	62.57					50.90	107.05	427.93	922.73	YCC Maint Diesel
otal	Gas	5,793.63	9,218.57	4,605.16	7,014.67	6,078.34	10,411.29	5,740.59	11,371.79		12,88516		12,593.43	5800.58	12,159.52	5,924.92	11,331.05		9,862.10	5,713.76	10,962.51		9,484.81	5031.52	9,252.02			Total
otal	Diesel	7,902.19	15703.32	6,272.12	13,890.19	6,272.12	13,890.19	3,852.03	8,513.03	4,707.67	10,644.06	3,979.20	8,419.98	3,930.66	7,723.76	4,466.11	9,084.91	4,231.10	8,450.86	4,314,47	8,639.71	3,813.05	7,842.32	6,196.64	13,031.49		125,833.82	Total
																											251,980.77	TotalSpent

For natural gas, it came down to (usage) x (emission factor). All of the natural gas is from ConEd.

For #2 fuel oil which is used for heating, (no biodiesel is currently used) the calculation was (usage in gallons) x (emission factor). The below shows the usage in gallons:

Date	Year	Location	Gallors	Notes	AACCCC	Downine Park	Police / Court	PR	Records	Sewer (VS)	Town Hall (TH)	Water(SW)	DEP
9-Jan	2020	AACCCC	2,000.0		2,000	0	0	0		0	0	0	0
30 Jan	2020	AACCCC	1,500.3	_	1,500	0	0	0	0	0			0
3 Feb 25- Feb	2020	AACCCC	1,700.2 3,500.2		1,700 3,500	0		0	0	0			0
26-Mar	2020	AACCCC	902.2		902			0		0			
17-Nov	2020	AACCCC	4,418.4		4,418	0	0	0	0	0		0	0
18- De c	2020	AACCCC	1,994.3	_	1,994	0	0	0			0		0
4 Jan 4 Jan	2021	Downing Park Downing Park	508 113.3		0	51 113	0	0	0	0			0
22 Jan	2020	Downing Park	21.6		o	22	0	o		ō			ō
12 Feb	2020	Downing Park	661		0	66	0	0		0	0	0	0
2-Mar	2020	Downing Park	185.0	_	0	185	0	0					0
2-Apr 28-Oct	2020	Downing Park Downing Park	105 B		0	106	0	0	0	0	0		0
1- Dec	2020	Downing Park	29.4		0	29	0	0	0	0			0
1-Dec	2020	Downing Park	31.5		0	32		0		0			0
1- Dec	2020	Downing Park	361	_	0	36		0		0			0
1- Dec	2020	Police / Court	38.7 680.0		0	39 0	0 680	0	0	0			0
5- Feb	2020	Police / Court	848.8		o	0		o		0			0
ZS-Feb	2020	Police / Court	2931		0	0	893	0		0		0	0
19-Mar	2020	Police / Court	950.2		0		951	0					0
22-Apr 27-May	2020	Police / Court Police / Court	9021 380.7		0	0	902 381	0		0	0		0
19-Oct	2020	Police / Court	540.6		0	0		0		0			0
19-Oct	2020	Police / Court	560.4		0	0		0		0			0
Z3-Nov	2020	Police / Court	7005	_	0			0		0	0		0
3D-Nov 3D-Nov	2020	Police / Court Police / Court	455.6 633.6		0	0	45 6 634	0	0	0			0
23 Dec	2020	Police / Court	1,0001		ő	0		0	0	0			0
30-Dec	2020	Police / Court	500.0		0	0	500	0	0	0	0	0	0
13-Nov	2020	PR Property	19.4		0			19	0				0
8-Jan 4-Jan	2020	Records Sewer (YS)	470.6 400.7	_	0		0	0	471	401	0		0
13 Jan	2020	Sewer(15)	545.2		ő		0	0	0	545	0		0
20 Jan	2020	Sewer(YS)	268.6		0	0		0		269	0		0
27- Jan	2020	Sewer(\S)	330.2		0	0		0		330	0		0
27-Jan 3 Feb	2020	Sewer(\S) Sewer(\S)	879.3 406.0		0	0		0		879 406	0		0
11- Feb	2020	Sewer(\S)	3732		0	0		0		374	0		
11- Fe b	2020	Sewer(YS)	530.0		0	0	0	0	0	530	0	0	0
21- Fe b	2020	Sewer(\S)	530.2	_	0	0		0	0	530	0		0
2-Mar 9-Mar	2020	Sewer(\f) Sewer(\f)	490.7 25.9	_	0	0		0	0	491 26	0		0
10-Mar	2020	Sewer(\S)	5338		ő	0		0		534	0		0
11-Mar	2020	Sewer(\S)	561.9		0	0		0		562	0		0
20-Mar	2020	Sewer(\S)	522.3	_	0	0		0		522	0		0
31-Mar 10-Apr	2020	Sewer(YS) Sewer(YS)	439.1 39.6.2		0		0	0	0	439 396	0		0
17-Apr	2020	Sewer(\S)	345.3		ő	ō		0		345	0		o
17-Apr	2020	Sewer(YS)	485.4		0	0	0	0	0	485	0		0
27-Apr	2020	Sewer(\5)	330.8	_	0	0		0		331	0		0
1- May	2020	Sewer(\S)	2401		0			0		240 405	0		0
12 May 21- May	2020	Sewer(\S) Sewer(\S)	405.1 321.2		0		0	0	0	321	0		0
1-Jun	2020	Sewer(YS)	261.6		o	0	0	0	0	262	0		0
8-Jun	2020	Sewer(YS)	3331	_	0	0		0	0	333			0
19-Jun	2020	Sewer(\fs)	2109		0	0	0	0		211	0		0
6 Jul 14 Jul	2020 2020	Sewer(\f) Sewer(\f)	300.0 21.2.6		0	0		0		300 213	0		0
29-Jul	2020	Sewer(YS)	269.4		o	0	0	0	0	269	0		0
12-Aug	2020	Sewer(\S)	365.9		0	0	0	0	0	366	0		0
25-Aug	2020	Sewer(\S)	128.4	_	0			0	0	126	0		0
1-Sep 14-Sep	2020 2020	Sewer(YS) Sewer(YS)	229.0 262.5		0	0	0	0		229 263	0		0
29-Sep	2020	Sewer(\S)	41.65		o	Ö		o		417	0		0
8-Oct	2020	Sewer(\S)	323.0		0	0	0	0	0	323	0	0	0
8-Oct	2020	Sewer(\S)	6601	_	0		0	0		660	0	0	0
22-Oct 3-Nov	2020	Sewer(\S) Sewer(\S)	475.3 525.4		0	0		0	0	475 525	0		0
13-Nov	2020	Sewer(\S)	359.7		0		0	0	0	360			0
Z3-Nov	2020	Sewer(\S)	1209		0	0	0	0	0	121	0	0	0
Z3-Nov	2020	Sewer(\5)	360.2		0	0		0		360	0		0
4-Dec	2020	Sewer(YS)	471.2 579.9	_	0	0	0	0	0	471 580	0	0	0
24-Dec	AU AU	Sewer(15)	5/9.9 358.6		0	0		0	_	359	0		0
20 Jan	2020	Town Hall (TH)	291.8		0	0	0	0	0	0	292	0	0
5- Feb	2020	Town Hall (TH)	597.9		0			0		0		0	0
27- Fe b 26- Mar	2020	Town Hall (TH)	315.5 673.0		0	0		0		0		0	0
1- May		Town Hall (TH)	261.4		0			0		0		0	0
26-Oct	2020	Town Hall (TH)	187.9		0	0	0	0	0	0	188	0	0
7- Dec		Town Hall (TH)	79 2.6		0	0		0		0		0	0
18-Dec 28-Dec	2020	Town Hall (TH) Town Hall (TH)	793.6 394.8	_	0	0		0	0	0			0
20 Jan	2020	Water(SW)	31.2		0			0		0			0
20-Jan	2020	Water (SW)	303.0		0	0		0	0	0			0
20 Jan	2020	Water(SW)	387.8		0	0	0	0		0		338	0
7- Feb 7- Feb	2020	Water(SW)	45.9 245.7	_	0	0		0		0			0
7- Feb	2020	Water(SW)	309.6					0					0
27- Fe b	2020	Water(SW)	509		0	0	0	0	0	0	0	51	0
27- Fe b		Water (SW)	199 9		0	0		0		0			0
27- Feb 3-Apr		Water(SW)	497.7	_	0	0		0		0	0		0
3-Apr 3-Apr		Water(SW) Water(SW)	85.2 255.0		0			0			0		0
3-Apr		Water(SW)	531.9		ő	0		0					0
19-Oct	2020	Water(SW)	37.7		0	0	0	0	0			35	c
19-Oct		Water(SW)	1069	_	0			0		0			
19-Oct 30-Nov	2020	Water(SW)	535.9 1.0		0	0		0	0	0			0
30-Nov	2020	Water (SW)	21		0			0					
3D-Nov	2020	Water (SW)	55.2		ŏ	ō		o		o			Č
30-Nov	2020	Water (SW)	55.2		0	0		0		0			
30-Nov	2020	Water(SW)	250.3		0			0					
ZS-Dec ZS-Dec	2020	Water(SW)	59 B 31 2.4	_	0	0		0	0	0			0
ZS-Dec		Water(SW)	636.6		0	0		0		0			0
		DEP	6509		ō	0		o		o	0		651
18- De c					16,016	766	9,046		471	16,588	4,309	4,997	660

For propane, it was (usage in gallons) x (emission factor). This is a small number.

For waste oil, it was (usage in gallons) x (emission factor). This is also a small number.

Some emissions factors are detailed below:

ossil Fuels	01,1110,2010 01,	, aocaments	s/emissi o n-fa	auuis 2014.pui					Conversion to	CO2E	Converstion to	, metric ton:
Fuel Type	Heating Value	CO3 Footor	CH4 Fostor	NOO Easter	CO2Factor	CH4 Factor	N2O Foster	Unit	CO2 e	CO2e	CO2e	CO2e
ruei iype	nearing value							Unit				
		kg CO2 per		g N2O per		g CH4 per	g N 20 per		kg CO2e per		Metric Tons /	
			mmBtu	mmBtu	scf	scf	sef			scf		scf
Natural Gas (per scf)	0.001026							scf		0.05449555	0.0531148	
Propane Gas	0.002516							scf		0.154706471	0.06149035	
	mmBtu per	kg CO2per	-	g N2O per		g CH4 per	g N 20 per		kg CO2e per		Metric Tons /	
	gallon		mmBtu	mmBtu	gallon	gallon	gallon			gallon		gal
Distillate Fuel Oil #2	0.138								74.21		0.0742138	
Motor Gasoline	0.125								70.47		0.0704738	
Propane	0.091	62.87	_		5.72	0.27	0.05	gallon	63.12	5.74165	0.0631238	0.00574
Used Oil	0.138	74	3	0.6	10.21	0.41	0.08	gallon	74.25	10.24409	0.0742538	0.0102
Gas	100 year GWP											
CH4	25											
N2O	298											
lectricity												
From same EPA website above:												
	Total output em	ission factor	rs	Non-baseload	emission facto	ors						
e GRID Subregion	CO2Factor	CH4 Factor	N2O Factor	CO2 Factor	CH4 Factor	N2O Factor			CO2 e		CO2e	
			(lb N2O	(lb	(lb	(lb			Metictons /		Metictons/	
	(lb CO2/MWh)	/IVIWh)	/MWh)	CO2/MWh)	CH4/MWh)	N2O/MWh)			kw hr		kw hr	
NYCW (NPCC NYC/Westch ester)	622.42	0.02381	0.0028	1,131.63		0.00244			0.000283053		0.000514041	
	622.42			1,131.63		0.00244			0.000283053		0.000514041	
Source: EPA Year 2010 eGRID 9th a	622.42 edition Version 1.	.0 February	2014.	,	0.02358	0.00244			0.000283053		0.000514041	
Source: EPA Year 2010 eGRID 9th e Note: Total output emission factor	622.42 edition Version 1. ors are used for qu	.0 February uantifying e	2014. missions fro	m purchased el	0.02358 ectricity.							
Source: EPA Year 2010 eGRID 9th a	622.42 edition Version 1. ors are used for qu	.0 February uantifying e	2014. missions fro	m purchased el	0.02358 ectricity.			My note:			0.000514041 oy purchasing gr	een power
Source: EPA Year 2010 eGRID 9th of Note: Total output emission factor Note: Non-baseload emission fac	622.42 edition Version 1. ors are used for qu	.0 February uantifying e	2014. missions fro	m purchased el	0.02358 ectricity.			My note:				een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fac From EPA power profiler	622.42 edition Version 1. ors are used for qu tors are used for	.0 February uantifying e	2014. missions fro	m purchased el	0.02358 ectricity.			My note:				een power
Source: EPA Year 2010 eGRID 9th of Note: Total output emission factor Note: Non-baseload emission fac	622.42 edition Version 1. ors are used for quarters are used for profiler#/NYCW	.0 February uantifying e quantifying	2014. emissions from the emission	m purchased el n reductions fr	0.02358 ectricity. om purchased	green p <i>o</i> wei		My note:	You get almost			een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fac From EPA power profiler	622.42 edition Version 1. ors are used for qu tors are used for	.0 February uantifying e quantifying	2014. emissions from the emission	m purchased el	0.02358 ectricity. om purchased	green p <i>o</i> wei		My note:	You get almost			een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fac From EPA power profiler	622.42 edition Version 1. ors are used for quotors are used for profiler#/NYCW CO2	.0 February uantifying e quantifying	2014. emissions froi the emission	m purchased el n reductions fr	0.02358 ectricity. om purchased, NOx as CO2 e	green p <i>o</i> wei		My note:	You get almost			een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fac From EPA power profiler	622.42 edition Version 1. ors are used for quotors are used for profiler#/NYCW CO2	.0 February uantifying e quantifying NOx	2014. emissions froi the emission	m purchased ei n reductions fro NOx as CO2e lbs / Mwhr	0.02358 ectricity. om purchased, NOx as CO2 e	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons /	t 2x the impact b		een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fact From EPA power profiler https://www.epa.gov/egrid/power-j	622.42 edition Version 1. ors are used for quotors are used for profiler#/NYCW CO2 lbs/Mwhr	.0 February uantifying e quantifying NOx Ibs / Mwhr	2014. emissions froi the emission	m purchased el n reductions fr NOx as CO2 e Ibs / Mwhr 89.4	0.02358 ectricity. om purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr	t 2x the impact k		een powei
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fact From EPA power profiler https://www.epa.gov/egrid/power-j	622.42 edition Version 1. rors are used for quotors	.0 February uantifying e quantifying NOx Ibs / Mwhr	2014. emissions froi the emission	m purchased el n reductions fr NOx as CO2 e Ibs / Mwhr 89.4	0.02358 ectricity. om purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr 0.000311162	t 2x the impact k		een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fac From EPA power profiler https://www.epa.gov/egrid/power-j Con Ed NYSEG	622.42 edition Version 1. rors are used for quotors	.0 February uantifying e quantifying NOx Ibs / Mwhr	2014. emissions froi the emission	m purchased el n reductions fr NOx as CO2 e Ibs / Mwhr 89.4	0.02358 ectricity. om purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr 0.000311162 0.00012838	t 2x the impact b		een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fact Note: Non-baseload emission fact From EPA power profiler https://www.epa.gov/egrid/power-pactions.com/epa-gov/epa-gov/ep	622.42 edition Version 1. ors are used for quotors are used for profiler#/NYCW CO2 lbs / Mwhr 596.4 253.1	OFebruary uantifying e quantifying NOx Ibs/Mwhr 0.3 0.1	2014. missions froi the emission 298 298	m purchased el n reductions fr NOx as CO2 e Ibs / Mwhr 89.4	0.02358 ectricity. om purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr 0.000311162 0.000128358 0.000378303	t 2x the impact b		een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission factor Note: Non-baseload emission factor From EPA power profiler https://www.epa.gov/egrid/power-pactors/www.epa.gov/egrid/power-	622.42 edition Version 1. ors are used for quotors are used for profiler#/NYCW CO2 lbs / Mwhr 596.4 253.1	O February uantifying e quantifying NOx Ibs / Mwhr 0.3 0.1	2014. missions froi the emission	m purchased el n reductions fr NOx as CO2 e Ibs / Mwhr 89.4 29.8	o.02358 ectricity. on purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr 0.000311162 0.000128358 0.000378303	t 2x the impact b		een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission facts Note: Non-baseload emission facts From EPA power profiler https://www.epa.gov/egrid/power-pace. Con Ed NYSEG NYPA NYCW (NPCC NYC/Westchester) Based on telecon with Steve Cam	622.42 edition Version 1. ors are used for quarters are used for control of the	OFebruary uantifying e quantifying NOx Ibs / Mwhr 0.3 0.1	2014. winissions from the emission 298 298 298 1985	n purchased el n reductions fr NOx as CO2 e Ibs / Mwhr 89.4 29.8 Ibs/kwhr	o.02358 ectricity. on purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr 0.000311162 0.000128358 0.000378303	t 2x the impact b		een powel
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fact From EPA power profiler https://www.epa.gov/egrid/power-jubs//wei-jubs//wei-jubs//wei-ju	622.42 edition Version 1. prs are used for quotors are used for considerity (CO2 lbs / Mwhr 596.4 253.1 pipbell on Feb 9,20 GWHrs 36,620	OFebruary uantifying e quantifying NOx Nox Ibs/Mwhr 0.3 0.1 0.0, use 80% Percent 0.55	2014. missions from the emission 298 298 298 10s/kwhr 1.0094	n purchased ei n reductions fr NOx as CO2e Ibs / Mwhr 83.4 29.8 Ibs/kwhr 0.56	o.02358 ectricity. on purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr 0.000311162 0.000128358 0.000378303	t 2x the impact b		een powe
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fact Note: Non-baseload emission fact From EPA power profiler https://www.epa.gov/egrid/power-jub.com/Ed NYSEG NYPA NYCW (NPCC NYC/Westchester) Based on telecon with Steve Cam Gas Oil	622.42 edition Version 1. prs are used for quotors	OFebruary uantifying e quantifying NOx Ibs/Mwhr 0.3 0.1 010, use 80% Percent 0.55 0.13	2014. wissions from the emission 298 298 298 1bs/kwhr 1.0094 211	m purchased el n reductions fro NOx as CO2e Ibs / Mwhr 83.4 29.8 Ibs/kwhr 0.56 0.28	o.02358 ectricity. on purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr 0.000311162 0.000128358 0.000378303	t 2x the impact b		een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fact Prom EPA power profiler https://www.epa.gov/egrid/power-pacticles//www.epa.gov/egrid/power-pa	622.42 edition Version 1. prs are used for quotors are qu	OFebruary uantifying e quantifying NOx Ibs/Mwhr 0.3 0.1 010, use 80% Percent 0.55 0.13 0.25	2014. wissions from the emission 298 298 298 105/kwhr 1.0094 211	m purchased el n reductions fro NOx as CO2 e Ibs / Mwhr 89.4 29.8 Ibs/kwhr 0.56 0.28	o.02358 ectricity. on purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr 0.000311162 0.000128358 0.000378303	t 2x the impact b		een power
Source: EPA Year 2010 eGRID 9th Note: Total output emission fact Note: Non-baseload emission fact Note: Non-baseload emission fact From EPA power profiler https://www.epa.gov/egrid/power-jub.com/Ed NYSEG NYPA NYCW (NPCC NYC/Westchester) Based on telecon with Steve Cam Gas Oil	622.42 edition Version 1. prs are used for quotors	OFebruary uantifying e quantifying NOx Ibs/Mwhr 0.3 0.1 010, use 80% Percent 0.55 0.13	2014. wissions from the emission 298 298 298 1bs/kwhr 1.0094 211	n purchased el n reductions fr NOx as CO2 e Ibs / Mwhr 83.4 29.8 Ibs/kwhr 0.56 0.28	o.02358 ectricity. on purchased, NOx as CO2 e lbs / Kwhr	green p <i>o</i> wrei		My note:	You get almost CO2 e Metictons / kw hr 0.000311162 0.000128358 0.000378303	t 2x the impact b		een power

Now, let's look at Scope 2 and the emissions associated with electricity generation. For this example, I will feature the information from NYSEG. They supplied for each of the 48 meters, a history of billing. This included usage in kw-hrs and costs. The usage was analyzed. Bills were received for some meters monthly and others every two months. The final data (which was close to a year but typically off by a few days) was factored to represent a full 365 days. This yielded usage data in kw-hrs for each meter for a full year.

Each electricity supplier was asked for the makeup of how the power was generated. Data from NYSEG is shown below. Note that I was informed that it was applicable for the time period analyzed (post 2018).

Fuel Sources and Air Emission to Generate Your Electricity for New York State Electric & Gas Corp.—NYSEG - 2018 January 1, 2018–December 31, 2018

Thus, I calculated an estimate for the emissions of CO2 per kw-hr for the blend. This was then applied to the consumption data to yield the equivalent CO2 associated with our electric usage. I believe this is more accurate than using average e-grid data:

			lbsCO2		# CO2/#			# CO2/Kw
	Percent	Actual	/1000000 BTU	Plus leakage	Me thane Factor		BTU/kwhour	hour
Biomass	0.05	0.0005	0			1,000,000	0	0
Coal	4	0.04	228			1,000,000	10,551	0.10
Hydro	15	0.15	0			1,000,000		-
Natural Gas	40.9	0.409	117	0.02	84	1,000,000	7,732	0.44
Nuclear	34.9	0.349	0			1,000,000	10,442	-
Oil	0.05	0.0005	0			1,000,000	0	-
Renewable Biogas	0.05	0.0005	0			1,000,000	0	-
Solar	0.05	0.0005	0			1,000,000	0	-
Solid Waste	2	0.02	91			1,000,000	8,000	0.01
Wind	3	0.03	0			1,000,000		-
	100	1						0.55

The below table summarizes the NYSEG data for consumption by user:

Туре	Type																
•••	• • •	SL	TL	Unidentifie d		PS	NA .	Highway	Track	Parks Dept			Rail Station		YCCC	WWTP	Museu
Street Lights	SL	14,537	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pump Station	PS	0	0	0	0	32,347	0	0	0	0	0	0	0	0	0	0	0
Downing Park	SL	2,911	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stre et Lights	PS	0	0	0	0	3,148	0	0	0	0	0	0	0	0	0	0	0
Uni de ntifi ed	Unknown	0	0	4,160	0	0	0	0	0	0	0	0	0	0	0	0	0
Fire Dept#1	FD#1	0	0	0	9,270	0	0	0	0	0	0	0	0	0	0	0	0
YCCC	YCCC	0	0	0	0	0	0	0	0	0	0	0	0	0	16,482	0	0
TrafficLights	TL	0	1,353	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TrafficLights	TL	0	225	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Street Lights	SL	1,102	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pump Station	PS	0	0	0	0	3,982	0	0	0	0	0	0	0	0	0	0	0
Pump Station	PS	0	0	0	0	260	0	0	0	0	0	0	0	0	0	0	0
Pump Station	PS	0	0	0	0	24,209	0	0	0	0	0	0	0	0	0	0	0
Street Lights	SL	1,117	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Parks/Rec	ParksDept	0	0	0	0	0	0	0	0	62,920	0	0	0	0	0	0	0
JuniorLake Pool	NA	0	0	0	0	0	no data	0	0	0	0	0	0	0	0	0	0
Pump	PS	0	0	0	0	7,624	0	0	0	0	0	0	0	0	0	0	0
Pump	PS	0	0	0	0	80,550	0	0	0	0	0	0	0	0	0	0	0
Street Lights	SL	no data	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Street Lights	SL	13,271	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HWW Dept	Highway	0	0	0	0	0	0	101,157	0	0	0	0	0	0	0	0	0
HWW Dept	Highway	0	0	0	0	0	0	6,639	0	0	0	0	0	0	0	0	0
SewerPump	PS	0	0	0	0	108.032	0	0	0	0	0	0	0	0	0	0	0
Parks	Parks Dept	0	0	0	0	Ö	0	0	0	37,474	0	0	0	0	0	0	0
Pump	PS	0	0	0	0	17,642	0	0	0	Ö	0	0	0	0	0	0	0
Street Lights	PS	0	0	0	0	2,995	0	0	0	0	0	0	0	0	0	0	0
Unidentified	Unknown	0	0	37,459	0	0	0	0	0	0	0	0	0	0	0	0	0
Pump	PS	0	0	0	0	761	0	0	0	0	0	0	0	0	0	0	0
Devito Track	Track	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Street Lights	SL	15,748	0	0	0	0	ō	ō	0	o o	0	0	0	0	0	0	0
Police Dept	Police	0	0	0	0	0	0	ő	0	0	328,500	0	0	0	0	0	0
Street Lights	SL	1,425	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Water	SL SL	117	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Water	PS PS	0	0	0	0	81,812	0	0	0	0	0	0	0	0	0	0	0
	SL SL	257	0	0	0	01,012	0	0	0	0	0	0	0	0	0	0	0
Street Lights		257	0	0	0	0	0	0	0	0	0	43,907	0	0	0	0	0
Office trailers	Sparkle Lk																_
No data	NA OL	0	0	0	0	0	no data	0	0	0	0	0	0	0	0	0	0
Railway Park	SL	15,896	0	0	0	0	0	0		0	0	0	0	_	0	0	_
Old Rail Station	Rail Station	0	0	0	0	0	0	0	0	0	0	0	204	0	0	0	0
WastewaterTreat	WWTP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6,925	0
WWTP	VWVTP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	807,376	0
Parks/Rec	Spankle Lk	0	0	0	0	0	0	0	0	0	0	25,768	0	0	0	0	0
Stre et Lights	SL	268,075	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stre et Lights	SL	43,988	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Town Hall	Town Hall	0	0	0	0	0	0	0	0	0	0	0	0	101,640	0	0	0
Traffic Lights	TL	0	2,229	0	0	0	0	0	0	0	0	0	0	0	0	0	0
YCCC	YCCC	0	0	0	0	0	0	0	0	0	0	0	0	0	370,973	0	0
WWTP	WWTP	0	l o	0	0	0	0	n 1	0	0	0	0	0	0	0	575,899	1 0

Calculations also had to be made for NYPA and Constellation, since the Town purchases power from all of them. This data varied in granularity. In each case, a blended emission factor was calculated based on power production information, and usage data was then multiplied by that factor.

Wastewater treatment facilities: The Town central sewer plant and district is named the "Hallock's Mill" district and the plant is located on Greenwood Street. I originally noted that calculation of GHG emissions was not complete. Since then, I have reviewed the methodology used by prior consultants for the State, and updated this with current data. I calculated it two ways. Both are high level estimates based on default values as allowable: First, I used the EPA tool:

https://www.epa.gov/statelocalenergy/download-state-inventory-and-projection-tool

And I chose default values for all variables. I also inserted the average protein consumption per person of 42.6 kg/person/year, and no use of solids as fertilizer. This yielded 4,000 Mtons/year.

Second, I used the prior consultant report cited below (which estimated 3,510 Metric Tons / year in 2010). I used the same methodology in the report Mid-Hudson Regional Greenhouse Gas Emissions Inventory Final Report for Mid-Hudson Tier II Regional Greenhouse Gas Emissions (GHG) Inventory Prepared for New York State Energy Research and Development Authority (NYSERDA) 17 Columbia Circle Albany, New York 12203-6399 Prepared by ICF International, Sub-consultant to VHB, Inc. December 13, 2012 which is reprinted below:

Wastewater emissions are calculated based on the population served by wastewater treatment processes. Population data in the Mid-Hudson Region were obtained from the NYS Data Center. 33

Wastewater emissions were calculated using EPA's State Inventory Tool (SIT). Methane emissions from municipal wastewater treatment were calculated by multiplying the population served by municipal WWTPs, from the Census 2010 population data for the region, by the annual per-capita 5-day biological oxygen demand (BOD_5) rate times the emission factor of CH_4 emitted per quantity of BOD_5 . Default values for New York State in the SIT were used.

$$CH_{4}\ Emissions\ (MT) = \ Population\ x\ Per\ capita\ BOD_{5}\ \left(\frac{kg}{day}\right)x\frac{Days}{year}x\frac{MT}{kg}x\ EF\ \left(\frac{GgCH_{4}}{GgBOD_{5}}\right)$$

$$x\ \%\ of\ WW\ anaerobically\ digested$$

Where:

Population = Population served by municipal WWTPs.

Per capita BOD₅ = 5-day biochemical oxygen demand per capita. Default value is

0.09 kg BOD5/day.

EF = Emission factor of CH₄ emitted per quantity of BOD₅. Default

value is 0.6 Gg CH₄/Gg BOD₅.

% of WW anaerobically = Fraction of wastewater BOD $_5$ that is anaerobically digested.

digested

Default value is 16.25%.

Nitrous oxide emissions form municipal wastewater treatment were calculated by multiplying the population served by the percent of the population using centralized wastewater treatment (not septic systems), times the amount of direct N_2O emissions from wastewater treatment per person per year.

$$N_2O\ Emissions\ (MT)=\ Population\ x\ Fraction\ of\ population\ not\ on\ septic$$

$$x \ Direct \ N_2O \ emissions \ from \ WWT \left(\frac{gN_2O}{person}\right) x \frac{MT}{g}$$

Where:

Population Population served by municipal WWTPs.

Fraction of population not Percent of population that is served by centralized WWTPs as on septic

opposed to septic systems. The default value for New York

State is 79%.

Direct N₂O emissions from The amount of N₂O emitted from WWTPs. Default value is 4.0

WWT grams N₂O per person per year.

Nitrous oxide emissions from wastewater biosolids were calculated using the following equation:

$$N \ in \ Domestic \ Wastewater \\ = Population \ x \ Protein \left(\frac{kg}{person}\right) x \ Frac(npr) \left(\frac{kg \ N}{kg \ protein}\right) \ x \ Fraction \ nonconsumption \ N \ x \ \left(\frac{MT}{kg}\right) \\ N_2O \ Emissions \ (MT) \\ = N \ in \ Domestic \ WW \ (MT) \\ - Direct \ N \ Emissions \ from \ Domestic \ WW \ (MT) \ x \ (1) \\ - \% \ of \ Biosolids \ used \ as \ fertilizer) \ x \ EF \ \left(\frac{kg \ N_2O - N}{kg sewage \ N_{produced}}\right) x \ \left(\frac{N_2O}{N_2}\right) \\$$

Where:

Population Population served by municipal WWTPs.

Available protein per person per year (kg/person/year). Protein

Default value is 42.6 kg/person/year.34

Fraction of population not

on septic

Percent of population that is served by centralized WWTPs as opposed to septic systems. The default value for New York

State is 79%.

Direct N₂O emissions from

WWT

The amount of N₂O emitted from WWTPs. Default value is 4.0

grams N2O per person per year.

³⁴Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2010. Tables 8 to 14.

Town of Yorktown Greenhouse Gas Emissions Report for 2020

Based on discussion with the managers responsible for building and fleet maintenance, there were no fugitive emissions from refrigerant leaks during this period. I had forgotten to include this in the prior submission.

In total, the municipal emissions are therefore approximately 3,000Metric tons/year from vehicles and buildings plus 4,000 Metric tons/year from the fugitive emissions at the WWTP. This is a total of 7,000 Metric tons/year.

About the author:

This report was prepared entirely as a volunteer effort by R. DeAngelis. I am a retired IBM senior engineering manager with extensive experience in energy management. I have degrees in Chemical Engineering and an MBA. I mention this only to hope it provides some confidence in the assessment. I appreciate the opportunity to serve on the Yorktown Climate Smart Communities Task Force.